School Building Science Fridays[™]

Passive House and Schools

April 8, 2022 Welcome!

Better buildings. Better students.

About GBRI

TITT

The American Institute of Architects

About **GBRI**

0% Complete 0/1 Steps 0% Complete

0/1 Steps

0% Complete

0/1 Steps

Learn More: www.gbrionline.org/scholarship/

0% Complete

0/1 Steps

0% Complete

0/3 Steps

0% Complete

0/2 Steps

0/1 Steps

Approved for 1 HSW LU

Green Building Research Institute Provider Number: 40119134

A certificate of completion will be sent via email within 24 hours of today's session.

Today's Webinar

- Welcome & Introduction: Craig Schiller, CHPS
- Speaker Presentations:
 - Mike Woolsey, Swegon North America, Mike.Woolsey@swegon.com
 - Mir Ali, Swegon North America, Mir.Ali@swegon.com

• Audience Questions

©CHPS 2022

With Gratitude to Our Sponsors

©CHPS 2022

Housekeeping

- Reminder: This session is being recorded.
- Post questions at any time in Q&A box and comments at any time in Chat box.
- Please stay on mute and turn off your video.
- Recording and slides will be emailed to registrants and will be available on-demand on both CHPS and GBRI websites.
- Resources at end of deck for further learning.

About CHPS

WHO WE ARE: A non-profit collaborative of school districts, architects, builders, building scientists, health professionals, and consultants dedicated to fostering healthy learning environments.

WHAT WE DO: Provide technical resources for school design, construction, operations and maintenance standards through our extensive criteria programs and project reviewers.

MEMBERSHIP: We rely on member support to do what we do. Please consider joining us.

Better buildings. Better students.

https://chps.net/join-us

Our Impact

- Over **700** schools have been recognized as meeting the CHPS Criteria
- CHPS Criteria is in use in 14 states and has been adopted as the construction standard in over 60 public school districts.

©CHPS 2022

What Is School Building Science?

- The body of knowledge that informs the design, construction, operations, and occupancy of school buildings for the benefit of students, educators, staff, and the environment.
- The body of knowledge about the built environment that impacts how children learn and thrive.

Mapleton Adventure School – Mapleton, CO

- 1. Explore the common goals of CHPS and Passive House.
- 2. Review the key characteristics of Passive House buildings.
- 3. Understand IAQ (ventilation, comfort, sound, materials, etc.) research.
- 4. Case studies and lessons learned.

Continuing Education

About Swegon

Swegon⁴

Our purpose in the world

We enable healthy and comfortable indoor environments for people to be at their best, today and tomorrow.

Improving ventilation in the classroom improves more than the air quality

Difference in ventilation rate Manual use window vs Balanced mechanical ventilation **Test result improvement** Ventilation rate increase from 1 to 8 I/s/person

References:

Gao, Wargocki, Wang; **Ventilation System Type and the Resulting Classroom Temperature and Air Quality During Heating Season**, Lecture Notes in Electrical Engineering · September 2014

Bakó-Biró et al; Ventilation rates in schools and pupils' performance, Building and environment 2011

Fraunhofer Institute for Building Physics IBP, **Designing classrooms to enhance** *performance*, 2016

Improving ventilation in the classroom improves more than the air quality

Opening windows

Mechanical ventilation with heat exchanger

0% energy recuperation **~90%** energy recuperation

References:

Gao, Wargocki, Wang; Ventilation System Type and the Resulting Classroom Temperature and Air Quality During Heating Season, Lecture Notes in Electrical Engineering · September 2014

Bakó-Biró et al; Ventilation rates in schools and pupils' performance, Building and environment 2011

Fraunhofer Institute for Building Physics IBP, Designing classrooms to enhance performance, 2016

Improving ventilation in the classroom improves more than the air quality

Properly designed ventilation systems provide <u>dehumidification</u> that prevents

- mold growth
- damage from condensation

Properly designed ventilation systems provide *humidification* that helps students and staff fight off airborne infectious disease

Our promise to our customers

We are design team partners providing indoor environment solutions that work exactly as desired – adding value from project start to finish, and beyond.

Swegon Passive House Solution

- Energy Recovery Ventilators
- Demand Control Ventilation systems
- Chilled beams
- Grilles, registers, diffusers
- Transfer grilles

Passive House References

Multifamily Commercial Retail Hospitality Education

84 Passive Buildings in 11 countries use certified Swegon GOLD ERV: https://passivehouse-database.org/index.php?lang=en#k_Swegon

Passive House Design in Schools

AIA-approved course

pending

1.0 LU|HSW

Presenters:

Mike WoolseyCertified Passive House Designer, WELL AP, WELL FacultyBusiness Development ManagerSwegonVoting MemberASHRAE Standards Project Committee 227P Passive BuildingMemberiPHAAdvisorWELL Thermal Comfort Advisory

Mir Ali Application Engineer

Swegon

Learning Objectives

- 1. Common goals of CHPS and Passive House.
- 2. Review the key characteristics of Passive House buildings.
- 3. Understand IAQ (ventilation, comfort, sound, materials, etc.) research, standards and design considerations.
- 4. Case studies and lessons learned.

CHPS and Passive House

Common Goals

Mir Mohsin Ali (Ali)

How are we doing with IEQ?

- Americans spend approx. 90% of their time indoors: (EPA)
- Complex building system, but low performance
- 3500 deficiencies in 224 building study
- Air distribution system problems
- 7000 energy related deficiencies
- Comfort problems, IAQ problems
- Half of complaints HVAC related

https://chps.net/sites/default/files/CHPS_V_2006.pdf

Typical Existing School in the USA

- 44 years old
- 12 years since major renovation
- Equipment has 30-year lifespan

Typical Existing School in the USA

- 4x the occupant density found in offices
- Classrooms only occupied 31% of the time
- "Almost 100,000 public K-12 schools represent 5% of commercial building energy consumption, expend \$8 billion in utility bills, and serve 50 million students plus 3 million teachers." <u>Energy.gov</u>

Attendance in the classroom during school hours

TeknDr. Dennis Johansson, Presence in Buildings - Measurements and Estimates, 2010

New Schools in the USA

- Larger than existing schools
- No standardized footprint or aspect ratio
- (6200+) k-12 projects in design

Passive House vs CHPS intent

Passive House is a building standard that is truly **energy efficient, comfortable and** affordable at the same time.

Passive building comprises a set of design principles used to attain a quantifiable and rigorous level of **energy efficiency** within a specific quantifiable **comfort** level.

Goal: To nationally foster well-designed, operated, and maintained schools that enhance IEQ.

•CHPS Criteria defines high performance attributes in the categories of energy, water, sustainable sites, materials, indoor environmental quality, policy and operations.

CHPS Impact

- Over 700 completed CHPS schools across America.
- Approx. another 300 schools underway in the U.S. seeking CHPS recognition.
- 60 school district committed to build new schools to CHPS high performance building.
- Twelve states have state or region-specific high performance school building Criteria, including California, Washington, NY, etc.
- Participating districts include Los Angeles
 Unified School District.

https://chps.net/what-we-do

US-CHPS Criteria Framework

Table 1: Point Assignments in US-CHPS Criteria

Category	Total 2014 US-CHPS % (Points)
Integration (II)	8.5% (21)
Indoor Environmental Quality (EQ)	33% (82)
Energy (EE)	25% (63)
Water (WE)	8.0% (20)
Site (SS)	9.5% (24)
Materials & Waste Management (MW)	8.5% (21)
Operations & Metrics (OM)	7.5% (19)

US-CHPS Criteria Organization

Table 2: Criteria Summary

CRITERION	NUMBER	SECTIONS	P
Integration	<u> </u>		-
Integrated Design	II 1.0	Integrated Design	
	H 1.1	Enhanced Integrated Design	
District Level Commitment	11.2.1	District Level Commitment	
School Master Plan	11 3.1	School Master Plan	
High Performance Transition Plan	114.1	High Performance Transition Plan	T
Educational Display	115.1	Educational Display	Т
Educational Integration	116.1	Educational Integration	
Demonstration Area	117.1	Demonstration Area	Т
Climate Change Action / Carbon Footprint Reporting	118.1	Climate Change Action / Carbon Footprint Reporting	Т
Crime Prevention Through Environmental Design	119.1	Crime Prevention Through Environmental Design	
Innovation	II 10.1	Innovation (CHPS Verified Projects Only)	
Indoor Environmental Quality		A construction of the second	
HVAC Design – ASHRAE 62.1	EQ 1.0	HVAC Design - ASHRAE 62.1	Т
	EQ 1.1	Enhanced Filtration	
	EQ 1.2	Dedicated Outdoor Air System	
Pollutant & Chemical Source Control	EQ 2.1	Pollutant & Chemical Source Control	
Outdoor Moisture Management	EQ 3.1	Outdoor Moisture Management	Т
Ducted Returns	EQ 4.1	Ducted Returns	T
Construction Indoor Air Quality Management	EQ 5.1	Construction Indoor Air Quality Management	
	EQ 5.2	Moisture Management	
Post Construction Indoor Air Quality	EQ 6.1	Post Construction Indoor Air Quality	
Low Emitting Materials	EQ 7.0	Low Emitting Materials	
	EQ 7.1	Additional Low Emitting Materials	
Low Radon	EQ 8.1	Low Radon	
Thermal Comfort – ASHRAE 55	EQ 9.1	Thermal Comfort – ASHRAE 55	
Controllability of Systems	EQ 10.1	Individual Controllability	+
	EQ 10.2	Controllability of Systems	+
Davlighting	EQ.11.0	Daylighting: Glare Protection	+
	EQ 11.1	Daylight Availability	+
Views	EQ 12.1	Views	+
Electric Lighting Performance	EQ 13.1	Electric Lighting Performance	+
	EQ 13.2	Superior Electric Lighting Performance	+
Acoustical Performance Low-EMF Best Practices	EQ 14.0	Enhanced Accustical Dedemance	+
	EQ 14.1	Law ENE Water	+
	EQ 15.1	Low-EMF Rest Practices	+
Energy	1 Cd Tot		
Epergy Performance	EE 1.0	Energy Performance	T
	EE 1.1	Superior Energy Performance	1
Zero Net Energy (ZNE) Capable	EE 2.1	Zero Net Energy Capable	
Commissioning	EE 3.0	Commissioning	1
	EE 3.1	Additional Commissioning Qualifications	
02	EE 3.2	Building Envelope Commissioning	
Environmental Preferable Refrigerants	EE 4.1	Environmental Preferable Refrigerants	
Energy Management System	EE 5.1	Energy Management System	
	EE 5.2	Advanced Energy Management System and Submetering	
Natural Ventilation & Energy Conservation Interlocks	EE 6.1	Natural Ventilation & Energy Conservation Interlocks	T

https://chps.net/sites/default/files/US-CHPS_Criteria_2014_2016%20update_170706.pdf

Standards for School Design - Energy

US-CHPS Criteria 2.0

on Guide for New Construction

As adopted by the Authority Having Jurisdiction

- ASHRAE 90.1
- LEED v4.1
- CHPS
- Passive House

Different Noise Sources

RTU NOISE CONTROL SOLUTION

RTU NOISE CONTROL SOLUTION

Vibro-Acoustics provides a no-obligation application engineering Lay-In Service to analyze projectspecific RTU system design and provide an optimal solution.

WE PROVIDE an integrated NGC-VDR noise cantrol curb system that addresses all noise sources and paths so that the project's sound criteria are achieved.

The noise control curls system enables the comuting engineer to reap the kill benefits of locating IITUs over occupied spaces without the disadvantage of a riolae problem. According to the project's needs, a number of customicable features are integrated into the curb. What the engineer receives is a single. amaigamated solution to withress multiple areas of concern with single-source responsibility.

Targets prekkons

Noise Control Vertical Barrier To minimize environmental noise

Vibro-Acoustics' noise barriers help prevent property line scale problems. They can act as architectural screening as well as effective noise control that does not reduce apulgment performance.

Targets problems 13 14

Vibration loolation

To dampen vibrations that cause structure borne noise

Vibro-Accuatics isolates the entire IPU system externally. We take into consideration the location of the equipreent in relation to neighboring occupied spaces, roof deflection, and sound cateria. This is the only sure way to address all vibration sources affectively.

Anchorage calculations with PE/P.Eng stamp For seismic and wind loading

For code compliance, we perform all required anchorage calculations and provide connection details for the curb. Furthermore, the design and calculations are stamped by a podessional regiment.

Targeta problema 🔹 🕫

Noise Control Curls Service To block radiated noise

Noise radiating from the bottom of the HTU is often overlooked. Located inside the Vbro-Acoustics noise control such, the engineered barrier attenuates low frequency noise bettere it passes through the ceiling and into the occupied space.

Targels problems

diacharge silencers To minimize environmental noise

Typical condenser tans have little static pressure to spare for stiencing noise radiated to property lines. Vibro-Acoustics' intoke and discharge stiencers are designed to minimize pressure drop and resist environmental commistant

Targets problems 7

HTL (High Transmission Loss) Casing To address breakout noise

After performing a breakout analysis, HTL casing is provided to attenuate breakout noise. This is a better alternative to Seld-applied duct logging because single-source responsibility is provided by Viber-Acoustics.

Fit-the System Silectors

To address alroome noise

When Accustics silences are built to the required shape and size to provide sufficient insertion loss while meeting space restrictions. Pathe-system silences also include flow-shaping internals which help keep pressure dop to a minimum.

Targets junklime & S & H 12

Fit-the-system allencers also include flow-shaping internals to keep pressure drop at a minimum.

Passive House

Key Characteristics Mike Woolsey
Passive House Schools

More than 100 K-12 Schools around the world have employed Passive House principles to provide energy savings and comfort

Project structure

- Pass-fail certification with separate requirements for
 - new construction
 - Retrofit (unique phased process)
- Certified Passive House professionals:
 - Perform energy modelling
 - CPHC/CPHD guide the A/E team into pre-certification, approve the submittals
 - CPHT train contractors and closely guide the construction process**

Project structure

- Quality control
 - 2 Airtightness tests
 - After airtight barrier established
 - After construction complete
 - Verifiers perform quality control confirmation of as-built structure.

Features, Passive House Institute (PHI)

		Criteria	Alternate Criteria
AIRTIGHTNESS			
Infiltration / Exfiltration n50 $(n_{0.2})$	ACH	≤ 0.6	
HEATING			
Annual Heating Demand	kBtu/ft²∙yr	≤ 4.75	
Peak Heat Load	Btu/ft ² •hr		≤ 3.17
COOLING			
Cooling	kBtu/ft²∙yr	\leq 4.75 + dehumidification allowance	
Cooling Load	Btu/ft ² •hr		≤ 3.17
THERMAL BRIDGING			
Ψ	Btu/(hr.ft.°F)	<0.006	

comfort and energy consumption, PHI

		Criteria classic(plus/premium)	Alternate Criteria
COMFORT	_		
Indoor Temperature	°F	< 75 most of the year (90%)	
Energy Demand Goals			
Renewable Primary Energy Demand (PER)	kWh/ft²⋅yr	19	
Non-renewable Primary Energy Demand	kWh/ft²·yr		38

Features, Passive House Institute (PHI)

				Criteria ¹		Alternative Criteria ²
Airtightness Pressurization test result n ₅₀	[1/hr]	≤		1.0		
Renewable Primary Energy (PE	ER) ³		Classic	Plus	Premium	
PER demand ⁴ [kE	BTU/(ft²yr)]	4	19.02 + (Q _H - Q _{H,PH}) • f _{ØPER,H} + (Q _C - Q _{C,PH}) • 1/2	14.26 + (Q _H - Q _{H,PH}) + (Q _C - Q _{C,PH}) • 1/2	9.51 + (Q _H - Q _{H,PH}) + (Q _C - Q _{C,PH}) • 1/2	±4.75 kBTU/(ft²yr) deviation from criteria
Renewable energy generation ⁵ (with reference to projected building footprint)	BTU/(ft²yr)]	2	-	19.02	38.04	with compensation of the above deviation by different amount of generation

Features, Passive House Institute (PHI)

	Heating	Cooling
Climate zone according to PHPP	Max. heating demand	Max. cooling + dehumidification demand
	[kBTU/(ft²yr)]	[kBTU/(ft²yr)]
Arctic	11.09	
Cold	9.51	
Cool- temperate	7.92	equal to Passive
Warm- temperate	6.34	House requirement
Warm	4.75	
Hot	-	
Very hot	-	

Passive House Results

Actual Passive House energy performance is 40-80% less than typical new building.

Sources

- Frappé-Sénéclauze, Tom-Pierre, et al. "Accelerating Market Transformation for High-Performance Building Enclosures ." Pembina, Sept. 2016, www.pembina.org/reports/passive-house-report-2016.pdf.
- Peper , Søren. "IPHA Fact Sheet 02 / 2019 ." IPHA Fact Sheet 02/2019: Heating Energy Consumption -Expectations Confirmed by Measurements in Practice, International Passive House Association (IPHA), Feb. 2019, news.passiv.net/archive/DGvow-aeM/_mcmHyFPT/pKN8V60HUJ.
- Johnston, David, et al. "Are the Energy Savings of the Passive House Standard Reliable? A Review of the as-Built Thermal and Space Heating Performance of Passive House Dwellings from 1990 to 2018." Passivhaus Institut, 18 Mar. 2020, passivehouse.com/05_service/03_literature/0305_alle.php.
- "Multifamily Passive House: Connecting Performance to Financing." Building Energy Exchange, 18 Mar. 2021, beexchange.org/report/multifamily-passive-house-connecting-performance-to-financing/.

Insulation & Thermal Bridging

Photo courtesy of Rockwool

Climate-specific Insulation & Minimal Thermal Bridging

- Save energy by reducing heat flows into/out of the building
- Improve IEQ by keeping surface temperatures warmer in winter, cooler in summer
- Reduce heating/cooling equipment size

Windows

Photo courtesy of Passipedia

Comfort and energy-efficiency

- Save energy with low-e glazing, insulated frame
- Improve IEQ by keeping surface temperatures warmer in winter, cooler in summer

Airtight Construction

saves energy by reducing

- infiltration of unconditioned air
- exfiltration of conditioned air

improves indoor environmental quality (IEQ) by

- reducing draftiness
- keeping fine airborne particles outside
- preventing noise migration from outdoors

Energy savings from Airtight Construction

Example

- Building dimensions
 - 100ft x 50ft x 50ft
- Occupied volume
 - 230,000ft³
- Envelope area
 - 25,000ft²
- Temperature,
 - indoors 68°F
 - outdoors 10°F

Airtight Construction Consequences

- Building must breathe
 - Fresh air no longer leaks in
 - H₂O, CO₂, VOC, odors, etc. in the air no longer leaks out
 - Continuous ventilation therefore required to flush out contaminants
- Can make ventilation air the dominant heating/cooling load
- Increases importance, and effectiveness, of energy-efficient ventilation strategies

Ventilation

The process of supplying air to or removing air from a space for the purpose of controlling air contaminant levels, humidity, or temperature within the space.

See: https://xp20.ashrae.org/terminology/

Passive House Ventilation

- Ventilation air provides comfort with less added heating or cooling
- Ventilation air may be postheated or cooled for comfort
- High-efficiency energy recovery
- Energy recovery ventilation with high electrical efficiency

Passive House Ventilation – heat recovery

	Sensible Heat	Latent Heat	Equipment Type
"Heat Recovery"	$\overline{\mathbf{V}}$		HRV
"Energy Recovery"	$\overline{\mathbf{V}}$	$\overline{\mathbf{V}}$	ERV
	Temperature of the air aka thermostat temperature	€ Moisture in the air aka Humidity	

Energy Recovery Ventilator (ERV) Passive House features

Heat Recovery Ventilator (HRV) Typical Winter Performance, Boston

Energy Recovery Ventilator (ERV) Typical Winter Performance, Boston

Energy Recovery Ventilator (ERV) Typical Summer Performance, Boston

Passive House HRV Value

Intent: optimize energy recovery with energy consumption

Sample PHPP input

Selection of ventilation unit with heat recovery

Location of ventilation unit	1-Inside thermal envelope					
				\frown		
		Heat recovery	Energy recovery	Specific	Application	Frost
	Go to ventilation units list	efficiency		efficiency		power input
	1-Sorting: LIKE LIST	Unit ywrg	η _{ERV}	[W/cfm]	[cfm]	
Ventilation unit selection	0569v103-Swegon - GOLD RX 50	0.85	0%	0.76	3178 - 5297	no
					•	

Passive House HRV Value

Certified heat recovery & electrical efficiency, leakage

This certificate was awarded based on the product meeting the following main criteria

Heat recovery rate	η_{HR}	≥	75 %
Specific electric power	$P_{el,spec}$	≤	0.45 Wh/m ³
Leakage		<	3 % ^{1) 2)}

Passive House HRV Value

Selection	PHI-certified HRV	AHRI-certified HRV
Airflow (CFM)	3450	3450
Size	35	20
Specific electrical power (W/CFM)	0.62	1.03 (+66%)
Value	Lowest life-cycle cost	Lowest first cost

Passive House ERV Value

Less overall energy use, sample project

	HR	V selected	
Annual Energy Consumption	lowest first cost (kWh)	PHI-certified (kWh)	VALUE of PHI-certification
Fans (3450 CFM)	10,396	6,235	41% less fan
Recovery Wheel	146	146	No change
Cooling	7,419	7,128	4% less cooling
Heating	23,790	24,402	3% more (reheat) heating energy,
Moisture control	1,268	997	21% less moisture control energy
TOTAL	43,020	38,908	9.6% less Total Energy use

Passive House in K-12 Schools

Case Studies and Lessons Learned

Passive House Schools

Worldwide

- 119 pre-k/kindergarten
- 169 secondary school | campus | university
- 24 residence halls

Select reference projects, Central Europe

Project	Type	Country	ventilation	Treated Floor Area	Primary Energy Demand (kbtu/sf/yr)
kindergarten	kindergarten	France	ERV. passive house certified	3000	38
Creche Muel	kindergarten	France	ERV, passive house certified	5000	36
Le Cerf Volant	kindergarten	France	ERV, passive house certified	5000	44
Le Moulin de Beauté	kindergarten	France	ERV, passive house certified	6500	33
Ecole Auriol	high school	France	ERV, passive house certified	15000	36
Collège Georges Chepfer	middle school	France	ERV, passive house certified	28000	32
Ecole Maternelle	kindergarten	France	ERV, passive house certified	7500	32
Nouvelle Ecole	kindergarten	France	ERV, passive house certified	12000	32
Ecole Albert Camus	high school	France	ERV, passive house certified	18000	28
Ecole - Templeuve	elementary	France	ERV, passive house certified	16000	25
Salzmanschule	Dormitory	Germany	ERV, passive house certified	7000	38
<u>KiTa Königsblick</u>	kindergarten	Germany	ERV, passive house certified	7500	30
Oranienschule	High School	Germany	ERV, passive house certified	5000	31
Gemeinschaftschule	high school	Germany	ERV, passive house certified	4000	31

Riedberg Passive House School, Frankfurt, Germany

Riedberg Passive House School, Frankfurt, Germany

 Riedberg Passive House School energy performance is 90% better than 177 similar schools in Germany

Read more: Riedberg Passive House School, Frankfurt, Germany [] (passipedia.org)

Passive House in Schools

Effect of Passive House retrofit on heat transfer

Select reference projects, around the world

					Primary Energy Demand
Project	Туре	Country	ventilation	Treated Floor Area (ft2)	(kbtu/sf/yr)
Brage Förskola	kindergarten	Sweden	ERV, passive house certified	20000	33
Norrgårdens förskola	kindergarten	Sweden	ERV, passive house certified	15000	30
<u>Humlan</u>	kindergarten	Sweden	ERV, passive house certified	9000	37
<u>Lustigkulla</u>	kindergarten	Sweden	ERV, passive house certified	14000	28
Skövde Förskola	kindergarten	Sweden	ERV, passive house certified	9000	31
Adolfsbergsskola	middle school	Sweden	ERV, passive house certified	60000	41
Internationale Schule	Kindergarten, elementary school	Sweden	ERV, passive house certified	94000	30
<u>Schule - Knivsta</u>	classrooms	Sweden	ERV, passive house certified	50000	28
Oakmeadow Primary School	classrooms	UK	ERV, passive house certified	22000	36
Bushbury Hill Primary School	classrooms	UK	ERV, passive house certified	17000	37
King's Hawford Junior School	gym	UK	ERV, passive house certified	4500	36
Richmond Hill Primary School	classrooms	UK	ERV, passive house certified	35000	36
Mosaic UPK Q368	kindergarten	USA	ERV, passive house certified	470	36

Mosaic Pre-K

- Owner:
 New York City School
 Construction Authority
- Architect: *CTA, Think!*
- M/E/P Engineer: Lilker Associates
- Passive House Consultant: AEA

Photo credit: CTA Architects Source: <u>Mosaic Pre-K Center, by CTA Architects |</u> <u>Architect Magazine</u>

Mosaic Pre-K

- Location: Queens NY
- Area: 4,700 ft²
- Built within a 39,000 ft²
 Senior Residence
- Passive House Institute PHI Certified Classic

Photo credit: CTA Architects Source: <u>Mosaic Pre-K Center, by CTA Architects |</u> <u>Architect Magazine</u>

PHI-Certified Building Characteristics

Building quality			This build	ding	Criteria	Alternative criteria
Heating						
	Heating demand	[kWh/(m ² a)]	13	≤	15	· ·
	Heating load	[W/m ²]	15	≤		10
Cooling			· / /			
Cooling + dehumi	dification demand	[kWh/(m ² a)]	13	≤	19	19
	Cooling load	[W/m ²]	14	5	-	12
Frequency of excessiv	vely high humidity	[%]	6	≤	10	
Airtightness	-					
Pressurization tes	st result (n ₅₀)	[1/h]	0.4	≤	0.6	
Non-renewable primary ene	rgy (PE)					
	PE demand	[kWh/(m ² a)]	115	≤	120	
Passive House Pre-K

Centralized DOAS units

- School
- Common Areas/Corridors
- heat recovery: **86% efficient**
- electrical efficiency: 0.72 W/CFM
 Decentralized ERV
- Apartments
- heat recovery: 85% efficient
- electrical efficiency: 0.70 W/CFM

Lessons Learned - Schematic Design stage

- push hard on tough PH energy targets
- using high-efficiency recovery ventilation isn't enough
- think hard where you need ventilation and where you don't

- Pay attention to all PH principles:
 - robust insulation
 - high performance fenestration
 - Elimination of all thermal bridging

Lessons Learned - Schematic Design stage

Ventilation Rate

- specifications, code and Passive House all have their own unique ventilation rate guidelines
- Don't assume one of these will be more stringent and don't be surprised if some of these guidelines will conflict each other.
- Analyze this early so you can negotiate any conflicts, if present.

Lessons Learned - Schematic Design stage

 Given high level recovery ventilation >70-75% and often above 90% thermal efficiency, supplying recovered air directly to space and having conditioning system separate is typically acceptable.

Lessons Learned - CD stage

- make sure the HRV/ERV and duct system air-sealing and commissioning is part of scope.
- Dunnage or curbs for Rooftop equipment should be thermally isolated to prevent thermal bridging.

Lessons Learned - Commissioning

- Decentralized HRV/ERV- pay attention to making sure ducts between each unit and space adhere to standard patterns including radii that would ensure adequate flow.
- For units place inside conditioned space pay attention to air sealing where outside ducts penetrate the envelopes.
- Centralized HRV/ERV/DOAS pay attention to insulating outdoor ducts.

- PH certification process requires documentation that design air flow rates are met s on ALL supply registers. TAB and leakage remediation should be part of subcontractor scope.
- make sure filtration media replacement schedule is clear to maintenance team and they are trained with how to physically perform system shutdown, and subsequent restart.

100 Flatbush Primary and High School

- Location: Brooklyn NY
- Area: 146,000 ft²
- Under construction
- Passive House Certification
 intended
- Brooklyn's first all-electric skyscraper

9 Passive House Institute recommendations

for Passive House School design

- 1. Simplify the geometry
 - Surface Area / Volume ratio <0.4 m3/m2
- 2. Apply appropriate insulation
- 3. Eliminate thermal bridges

- 4. Establish airtightness
 - Aim for 0.3 ACH in large buildings
- 5. Use Passive House quality windows
 - U_w less than 0.8 W/(m²K)

9 Passive House Institute recommendations

for Passive House School design

- 6. Ventilation
 - >15 20 l/s/person
 - >80% Hreff
 - <0.4 Wh/m3
 - Include free-cooling control
 - Include time-based of Demand control

- 7. Heat using Supply Air
- 8. Include sun shades and night ventilation to save cooling costs
- 9. Design cooling strategies to address unique Passive House properties
 - lower balance temperature
 - more cooling hours

Read more: Passive House schools - How to go about it [] (passipedia.org)

Passive House Schools

Reference Material

- Passive House Schools Boundary Conditions [] (passipedia.org)
- Passive House schools How to go about it [] (passipedia.org)
- Handbook for energy-efficient educational-use buildings

Audience Questions

Please type your questions in Q&A box.

©CHPS 2022

For More Information on CHPS

https://chps.net

- Studies & reports on high performance schools: <u>https://chps.net/knowledge-library</u>
- School Building Science Fridays Webinars: <u>https://chps.net/school-building-science-fridays</u>
- Our Criteria for New Construction & Major Renovation: <u>https://chps.net/chps-criteria</u>
- Membership info: <u>https://chps.net/join-us</u>

Thank you to Mike and Mir.

Thank you all for joining us today!

Please join us for the next free session in our School Building Science Fridays series:

Equity and the Physical Environment May 13, 2pm Eastern

Watch for registration link here: <u>https://chps.net/school-building-science-fridays</u>